
Logic and a Little Language for Heritage Resources on the
Semantic Web

Andrew Green (Instituto Mora, Mexico City) ahg@servidor.unam.mx

Summary
The work presented here is part of the interdisciplinary project Rescuing Memory: Image Preservation,
Information Systems, Access and Research, which investigates the dissemination, study and management
of heritage resources, and attempts to provide solutions to problems often faced in the realization of these
tasks.

One component of this project is the development of a scalable digital library application based on a back-
end of semantically modeled data. In designing the application, called El Pescador, we encountered (what
we believe to be) novel ways around obstacles to using the Semantic Web as a mechanism for modeling
catalogue data in applications of this type. Our work has focused on the following areas: (1) information
flow between the model and the user interface; and (2) mechanisms used to establish or configure
algorithms used in that process.

Our design proposal for El Pescador defines—among other things—a domain-specific language, has been
partially implemented, and will soon be updated following feedback from the current implementation.

Key Problems Encountered

(1) The lack of adequate studies of algorithms for processing information as it moves from the model to the
user interface, and, following user input, from the interface back into the model.

(2) The lack of a unified, scalable mechanism for defining vocabulary, model structure and model-interface
translation rules.

Proposed Solutions

In response to problem (1):

We analyzed model-interface translation from a general perspective and designed configurable
algorithms that may be applied to a wide range of semantically modeled catalogue data and record
presentation formats. This proposal, called “Knowledge Repository Logic”, applies information
engineering best-practice principles, such as encapsulation and modularity, throughout.

In response to problem (2):

We created a domain-specific (or "little") programming language (as yet unnamed—see below) with
which the programmer/model designer may establish vocabulary and model structure and set the
parameters of model-interface translation algorithms. This "full-stack" solution allows related
aspects of a semantic catalogue implementation to be established together, avoids the repetition of
information in this process, and offers simplified access to recurrent model and interface structures,
thus providing both easy deployment and scalability, and applying, again, said best-practice
principles.

More about the Project

For more information about the larger project this development is a part of, please see
<http://durito.nongnu.org>. All the software we create is released as free/open source (see below
for version control), and we strongly promote open access to heritage materials.

Language Example
File: person.def Definitions of related things

can be placed together in a
single file.

Stuff related to people

realm swv A realm is something like a
package in general-purpose
programming languages.
Normally all the vocabulary
defined in a given realm
goes in the same ontology.

vocabulary {
 class swv:Person {
 "Person"@en
 "Persona"@es
 subclassOf swv:Agent
 }

 property swv:hasGivenNames {

Here we define some
vocabulary.

 "Given Names"@en
 "Nombres"@es

This will produce labels using
rdfs:label.

 comment "All of a person's given names."@en
 domain swv:Person
 range xsd:String
 }

 property swv:hasFamilyNames {
 "Family Names"@en
 "Apellidos"@es
 comment "All of a person's family names."@en
 domain swv:Person
 range xsd:String
 }

As you'd expect, this line
creates an rdfs:comment
statement.

 property swv:hasFavoriteMovie{
 "Favorite Movie"@en
 "Película preferida"@es
 domain swv:Person
 range swv:Movie
 }
}

In this example, we'll assume
that the class swv:Movie is
defined in another file in the
same realm.

ruleset person {
 baseRule has_given_names {
 withProperty swv:hasGivenNames
 minCardinality 1
 maxCardinality 1
 }

A ruleset is a bunch of
rules used in graph
generation and model-
interface translation. In our
proposal, nodes are linked to
one and only one ruleset,
which determines how they
are processed in the system.

 baseRule has_family_names {
 withProperty swv:hasFamilyNames
 minCardinality 1
 maxCardinality 1
 }

baseRules establish which
properties may be used in
statements whose subject is
linked to this ruleset.

 baseRule has_favorite_movie {
 withProperty swv:hasFavoriteMovie

Here we are setting no limits

 multipleOrdered
 }

on how many times this
property may appear on a
node linked to this ruleset.
(See below for the meaning of
multipleOrdered.(A))

 pathRule favorite_movie_genre {
 has_favorite_movie->movie.has_genre
 }

This rule is for traversing a
part of the graph. By defining
it we're encapsulating some
complexity and optimizing the
traversal of matching
subgraphs.
Here the identifier
movie.has_genre refers to
the rule has_genre defined
in the ruleset movie; the
pathRule
favorite_movie_genre
will thus traverse the graph
from any node linked to this
ruleset to all nodes that
may be reached via a path
that traverses first a statement
with the property
swv:hasFavoriteMovie
and then whatever path is
defined by the rule
movie.has_genre. (B)

An upcoming versions of the
language will allow the
attachment of additional
information to pathRules,
specifically to help the search
subsystem generate clearer,
more relevant results.

 default textFunction full_name_fg {
 |{
 given_names = (@root->has_given_names).text
 family_names = (@root->has_family_names).text
 "#{family_names}, #{given_names}"
 }|
 }

Here we define a block of
executable code using a
general-purpose
programming language.
Currently the application can
process blocks written in
Ruby, though other languages
could also be implemented.
The purpose of this particular
block is to generate a snippet
of text that may "represent", in
the UI, nodes linked to the
ruleset. The special
variable @root refers to the
node currently being
processed. (C)

 fullDescription {
 block {
 title {
 "Basic personal data"@en
 "Datos personales básicos"@es

This template controls the
generation of full descriptions
of nodes linked to this
ruleset. (Full descriptions

 }
 df has_family_names
 df has_given_hames
 }

 block {
 title {
 "Movie tastes"@en
 "Gustos en películas"@es
 }
 <% if ((@root->has_favorite_movie).size > 0) %>
 df has_favorite_movie
 uniqueDF {
 label {
 "Number of generes of favorite movies"@en
 "Número de géneros de películas prefereidas"@es
 }
 value {
 textFunction
 |{ (@root->favorite_movie_genre).size.to_s }|
 }
 }
 <% else %>
 text {
 "No favorite movies!"@en
 "¡Ninguna película preferida!"@es
 }
 <% end %>
 }
 }
}

are like the full records of
objects in a catalogue.) The
template's elements are
media-agnostic. Label-value
pairs are called "description
fragments" and are
generated using either dfs,
which refer to rules defined
elsewhere in the ruleset, or
uniqueDFs, which can
embed text-generating code
directly in the template.

Code between these symbols
<% %> controls the
conditional execution of parts
of the template. (D)

repository {
 secondary SOC people {
 "People mentioned this catalogue"@en
 "Personas mencionadas este catálogo"@es
 hasGroupDomain swv:Person
 bindToRuleSet person
 }
}

Here we establish a collection
of people and bind all of its
members to the ruleset
person. (E)

Details

Keep Stuff Together

Key principles in system design include the non-repetition of algorithms and keeping together stuff that
goes together. Since definitions of vocabulary, model structure and model-interface translation rules must
refer to the same objects, it doesn't make sense to define those objects repeatedly in different locations
scattered throughout an application. As the language example shows, our proposal avoids this problem;
note, however, that this does not mean departing from the standards: if elements definable by the language
can also be established using an existing norm, in most cases it will be possible to implement the "export"
of those elements to the appropriate standard format. This is already the case for vocabulary definitions,
which are automatically exported to an RDF Schema in the current implementation.

Note also that the preceding example does not demonstrate everything we propose to define through the
language. Other elements that are currently implemented or may be implemented in the future include:
inference rules, more elaborate rules for graph generation and traversal, input validation rules, specialized
ordering (comparison) rules, and rules for constructing what we call "variable descriptions" (essentially,
shorter descriptions whose contents may be determined on-the-fly by the system in certain circumstances).

Abstracted Statement Layer above SW-Conformant Graph

In the models we've worked with, certain low-level graph patterns become so routine that it makes sense to
encapsulate and simplify them. This is the case of repeated properties that need to remember their order,

and alternate versions of a literal for different languages, for example. In addition, existing norms do not
provide certain facilities that we find useful, such as datatype hierarchies, the simultaneous assignment of a
language and a datatype to a literal, or a mechanism to distinguish structured values from other resources.
Thus, we've constructed an abstracted statement layer that provides these facilities and is operated on by
our little language; beneath this abstracted layer lies a SW graph that reflects it, modeling everything in it in
a conformant, though perhaps slightly less beauteous, manner.

(Point (A) in the language example shows this: the term multipleOrdered there means that, for nodes
linked to the ruleset person, repeated swv:hasFavoriteMovie properties have an order that must
be remembered and included in the model. In the SW-conformant graph this is implemented using an
rdf:Seq; but the abstracted statement layer hides this detail, allowing simplified access to the order of the
repeated properties.)

Better Path Definitions

Current mechanisms for describing paths between nodes in a model are text-based relatives of SQL. When
the complexity of a model increases and certain segments of complex paths appear repeatedly in several
parts of an application, these mechanisms provide insufficient flexibility and scalability. Our proposal allows
for the encapsulation and combination of definitions of segments of paths, thus avoiding repetition in, and
augmenting the semantic value of, path descriptions. (See point (B) in language example.)

Model Everything? No!!!

Semantic modeling is fun and good for you, too, but all the world is not a semantic model. Call us old-
fashioned, but we think some things are still best expressed by plain old code. You can see how we use
blocks of executable code in points (C) and (D) in the language example.

Levels of Presentation Logic

Some schools of thought in Cognitive Linguistics posit a strong distinction between the rules governing
expression and those that apply to human mental models. Following the (limited) analogy that may be
drawn between knowledge representations and mental models, we have taken a cue from this hypothesis,
and have integrated in our work the assumption that a user should not see a direct encoding of the
contents of a model, but rather a complex transformation that follows the rules of human communication. In
other words, while other Semantic Web projects are rooted in the assumption that language is
compositional, we work from the idea that—as Gilles Fauconnier puts it—"expression is not compositional
formal encoding that mirrors a compositional conceptual construction."

Concretely this view is most reflected in our description templating system (see point (D)), which allows a
programmer to use default templates when he or she knows they would produce appropriate results, or
tweak the generation of descriptions extensively, a task that is often necessary to provide the user with
concise, friendly output.

At the same time, however, the templating system remains media-agnostic: all templates may be used for
output to diverse formats, including Web, print, or even spreadsheet. Therefore, this part of the system
constitutes an initial, generic layer of presentation logic, whose output is manipulated by another layer that
transforms the non-specific descriptions it receives into concrete user-consumable resources.

Default Model Organization: Convention over Configuration

The current implementation of El Pescador provides a default global organization of the model, which we
expect will be appropriate for nearly all foreseeable uses of the system. (See point (E).)

Original Design Goals

Following is a summary of our original design goals:

- to allow the reuse of operations, rules and configurations in different parts of the KR logic;

- to provide a basis for the implementation of a wide variety of user functions;
- to allow said functions to be at once complex, flexible and easy-to-use;

- to allow a complex and expressive knowledge representation back-end;
- as appropriate, to keep configuration information in one place (or few places);
- to provide simple, intuitive, unrepetative and modular configuration mechanisms;
- to use the right configuration mechanisms for each part of the KR logic;
- to provide a basis for the optimization of operations for large repositories; and
- to support the inclusion of the KR logic system in an appropriate global application architecture.

Status and Roadmap

The implementation being demonstrated uses a previous, more cumbersome version of the language's
syntax. The system will soon be modified to accept the syntax that appears on this poster. The current
packaging mechanism is also different from that shown on the poster.

A website that uses El Pescador to disseminate and search a small collection of 19th century photographs
will soon go online. After that is completed, a major refactoring of both the language and the system is in
order. Possible changes or additions may include:

- An improved mechanism for defining inference rules. (The original proposal for this was never
implemented.)

- Inheritance among rulesets.

- Global rule definitions.

- More flexible and elegant mechanisms for determining how nodes are linked to rulesets.

- Embedding of description templates in other description templates.

What's in a name?

Our little language needs a name! If you have any suggestions, please let us know.

Download this poster from <http://durito.nongnu.org/docs/innsbruck2.pdf>!

Poster content provided under the Creative Commons Attribution-Non-Commercial-No-Derivs license.

Original (now outdated) documentation of our work is available, in Spanish, from
<http://200.67.231.185/mediawiki/index.php/Pescador:L%C3%B3gica_de_RC>.

Developer resources, including version control, are at
<http://200.67.231.185/mediawiki/index.php/Pescador:Recursos_para_desarrollador
es>.

Many thanks to the Instituto Mora and the Open Digital Library Network for their support. Thanks also to the
Audiovisual Social Research Lab and the other programmers involved in this effort: José Antonio Villarreal,
Sandra Luz Aguirre and Alejandro Martínez.

